

APTT vs Anti-Xa for Unfractionated Heparin Anticoagulation Monitoring

Robert C Gosselin, CLS Hemophilia Treatment Center UC Davis Health System, Sacramento, CA rcgosselin@outlook.com

2018 CAMLT Annual Meeting Sep 30, 2018

- Review clinical indications and considerations for unfractionated heparin (UFH) anticoagulation
- Understand the current laboratory methods and practices used to guide UFH anticoagulation
- Discuss the limitations of these assays and discuss implementation of alternative strategies and hurdles associated with same.

UFH citations

- Clinical: Smythe, MA et al. J Thromb Thrombolysis. 2016; 41:165-86.
- Laboratory:
 - Controversies: Zehnder J, et al Am J Hematol 2012; S137-140.
 - Monitoring: Marlar RA, et al Sem Thromb Hemost 2017; 43:253-60.
 - Anti-Xa discordance: Price EA, et al. Ann Pharmacotherapy 2013; 47:151-58.

UFH: What does it do

Sulfated glycosaminoglycan which complexes with antithrombin (AT)

- Kinetically enhances AT activity
- AT is a serine protease inhibitor
 - Serine proteases:
 - XIIa, XIa, Xa, IXa, Thrombin
- Non-specific UFH binding
 - monocytes, endothelium, circulating proteins

UFH Anticoagulation - Clinical

Indications

- Treatment (e.g. VTE, ACS)
- Prophylaxis (e.g. trauma)
- Other (e.g. ECLS)
- Infusion dose
 - Weight based (total vs ideal vs adjusted)
 - To bolus or not
 - Maximum infusion rate

UFH Anticoagulation - Clinical

- Weight
- Laboratory Testing baseline
 - CBC
 - PT and APTT
- Monitoring
 - Infusions vs subcutaneous
 - Guideline driven (e.g. CHEST)
 - Institution specific
 - Others (e.g. JCAHO)

UFH Anticoagulation – Clinical

- Although in place for ~60 years, the supporting evidence for current practices:
 - Weight based: weak
 - Monitoring frequency: weak
 - Monitoring methods (APTT vs anti-Xa): weak
 - Therapeutic targets:
 - APTT: very weak
 - Anti-Xa: very weak

Smythe, et al J Thromb Thrombolysis 2016; 41: 165-86.

UFH Anticoagulation – Laboratory

- Majority clinical laboratories use APTT
 - Reporting methods
 - Seconds
 - Ratios historical, not recommended
 - Heparin Therapeutic Range (HTR)
- Alternatives:
 - When baseline APTT is elevated
 - When there is UFH "resistance"

UFH Anticoagulation – Laboratory

- Guidance
 - College of American Pathologists (CAP)
 - Checklist requirements
 - Publications
 - CAP Olson JD, et al Arch Pathol Lab Med 1998; 122:782-798
 - CLSI H47-A2 Approved Guideline 2008
 - Brill-Edwards P, et al Ann Intern Med 1993; 119:104-109.
 - Described Anti-Xa (protamine) vs APTT HTR (ratios 1.5-2.5)

CAP Recommendations for UFH monitoring

- Adjusted and therapeutic doses requires monitoring
- Monitoring to occur at 6 hour intervals until desired response reached.
 - For IV: daily monitoring thereafter, pref. before 1000
- Phlebotomy opposite extremity of infusion site
- Provide method and therapeutic range

CAP Recommendations for UFH monitoring

- Baseline aPTT and platelet count
- Therapeutic range for each lot aPTT reagent assessed by ex-vivo samples using:
 - Comparisons with heparin level
 - Anti-Xa or protamine titration
 - Comparisons with previously validated reagents
- Does not advocate in-vitro spiking for determining HTR

Reminders...

"Waterfall" Coagulation Cascade:

APTT vs Anti-Xa

APTT

- Diagnostic test
 - Factor deficiency
 - Inhibitor assessment
 - Factor
 - Lupus anticoagulant
- Monitoring test
 - UFH
 - DOAC assessment
 - Measure of Rx efficacy
 - FFP/Cryo therapy
 - Factor replacement

Anti-Xa

- Monitoring test only
 - UFH
 - LMWH
 - Pentasaccharide
 - DOAC
 - Xarelto (rivaroxaban)
 - Eliquis (apixaban)
 - Saveysa (edoxaban)
 - Bevyxxa (betrixaban)

Limitations of Testing

APTT

• Pre-analytical:

• Sample stability, temperature, tourniquet time, site selection, citrate:blood ratio, etc.

Analytical:

 factor levels (high or low), inhibitors, anticoagulants, antibiotics, physiology, different lot sensitivity to factors and anticoagulants

Anti – Xa

- Pre-analytical:
 - Timing of sample
 - Sample stability
 - Site selection
 - Processing
- Analytical:
 - Cannot differentiate between anti-Xa drugs
 - Possible challenges with icterus and lipemia
 - Calibration

CAP Recommendations for UFH monitoring

- Therapeutic range for each lot aPTT reagent assessed by ex-vivo samples using:
 - Comparisons with heparin level
 - Anti-Xa or protamine titration really?
 - Comparisons with previously validated reagents
- Does not advocate in-vitro spiking for determining HTR

UFH Therapeutic range (HTR)

Anti-Xa activity, U/ml

Heparin Therapeutic Range (HTR)

Modified Brill-Edwards method

- VTE Rx patients only
- Comparison between APTT and Anti-Xa
- APTT HTR corresponding to 0.3 0.7 in treated patients
- R² ranges between 0.35-0.70 (never come close to 0.70)
- Recheck with every APTT reagent lot change

CAP Recommendations for UFH monitoring

- Therapeutic range for each lot aPTT reagent assessed by ex-vivo samples using:
 - Comparisons with heparin level
 - Anti-Xa or protamine titration
 - Comparisons with previously validated reagents
- Does not advocate in-vitro spiking for determining HTR

In-vitro addition vs Brill-Edwards HTR

Proposed Alternative HTR Assessment for New lot APTT reagents

* Comparing of commercial or UFH enriched NPP on current and new lot reagents

* Limits: slope? or intercept? or R²? of combination thereof...

CAP Recommendations for UFH monitoring

- Therapeutic range for each lot aPTT reagent assessed by ex-vivo samples using:
 - Comparisons with heparin level
 - Anti-Xa or protamine titration
 - Comparisons with previously validated reagents
- Does not advocate in-vitro spiking for determining HTR

CAP Appendix to guidelines

- Validation of UF heparin sensitivity of aPTT: Comparison with existing, validated reagent
 - Accumulating samples and freezing
 - NO minimum number detailed (Brill-Edwards: N=30)
 - Platelet-poor
 - No 2 samples on a given patient
 - Select reagent with comparable sensitivity
 - Comparison testing
 - old "x" axis vs new "y" axis
 - Cumulative summation of differences
 - Mean of new and old reagents
 - Difference between new old
 - <u>Cumulative</u> difference over lots
 - <5sec: NS; 5-7sec: concern; >7sec: action

Evidence supporting CAP summation of differences recommendations for UFH HTR assessment

Concept from S Moll, UNC

2018 CAMLT Annual Meeting Sep 30, 2018

Heparin Therapeutic Range (HTR)

- Problems for new lot HTR assessment:
 - No recommended sample size
 - No more than 2 samples per patient
 - CAP recommendations (vague)
 - Not reproducible (beginning vs end)
 - Poor sample handling for Anti-Xa testing
 - Occurs every 12-14 mos
 - HTR changes to dosing order sets

UFH Monitoring: Recommendations

Acceptable HTR methods:

- >20 samples (preferred N=30-50)
- <10% from same patient</p>
- Samples with INR <1.3
- Frozen samples acceptable if demonstrated equivalence between fresh and frozen results
- Must be determined on all instruments in use
- Cannot use single instrument for multiple labs/sites/instruments

Marlar RA, et al Sem Thromb Hemost 2017; 43: 253-60.

UFH Monitoring: Recommendations

Linearity between APTT and Anti-Xa measurements

Marlar RA, et al Sem Thromb Hemost 2017; 43: 253-60.

UFH Monitoring: Why not ratios

APTT ratios are not optimal

Marlar RA, et al Sem Thromb Hemost 2017; 43: 253-60.

Heparin "resistance"

Failure to achieve a therapeutic aPTT despite adequate or maximal dosing:

- Elevated fibrinogen
- Elevated factor VIII
 - Depressed antithrombin
 - Drug not given
 - Wrong patient

Heparin "resistance"

Alternative strategies:

Most likely available, but not often utilized: Thrombin time

Linear

TR can be created using UFH enriched normal pooled plasma

May be available:

Anti-Xa

Anti-Xa measurements

Two types chromogenic methods:

- With or without Antithrombin (AT)
- Without AT supplementing

<50% AT = \downarrow Anti-Xa Sample mixing with NPP

Calibration – variable UFH, LMWH, Hybrid Commercial vs In-house preparation

Anti-Xa activity: AT influence

UFH via HTR monitoring

We know the APTT is dismal Challenges with determining HTR Guidelines - CAP Feasibility – smaller labs Analytical – Pre-analytical variables Quality of sample, time delays, other existing conditions, etc

Some labs opting for Anti- Xa testing

UCDHS UFH-HTR Challenges

- Historical:
 - Poor communication between laboratory and endusers
 - Implementing embedded comments within APTT result
 - HTR at beginning of lot does not reproduce at end of lot use
 - Timing and dosing order set changes
 - Easy for the lab, more challenging for the pharmacy
 - The straw...

2016: New lot APTT evaluation

2016: New lot APTT evaluation

- APTT run on fresh samples
 - Auto-program run any elevated APTT with INR <1.19
 - Samples meeting criteria were saved:
 - Allegedly within 2 hours of collection
 - Allegedly after double centrifugation
 - Frozen at -70°C
- Recommendation to run concurrent fresh APTT and anti-Xa activity

2016: New lot APTT evaluation

North American Specialized Coagulation Laboratory Association

2016 UCDHS UFH Monitoring

- Presented data to Thrombosis Subcommittee
 - Concerns about initial data and subsequent data
 - Most likely poor processing before freezing
 - Concerns about lot changes and failure to reproduce HTR
 - Recommendations made by laboratory to consider switching to anti-Xa measurements
 - Paradigm shift in practice
 - Similar shift to when we implemented INR reporting

UFH Anti-Xa monitoring: Education

- Rationale for monitoring change
- Identify potential cost and labor savings
- Identify potential putative benefits of 24/7 anti-Xa testing
 - Current practice is once daily anti-Xa testing

Education: APTT vs Anti-Xa Rationale for change

APTT

- Influenced by 8 Fx levels
- Poor specificity
- Diagnostic test
 - Screen for Fx deficiency
 - Screen for Inhibitor
- Monitoring test
 - UFH, DTI, DOAC
 - Post Fx Rx

Anti-Xa

- Monitoring test only
 - UFH, Anti-Xa DOAC

Monitoring UFH with Anti-Xa Rationale for change – Cost?

- Shorter time to therapeutic target (TTT)
 - Within 6 hours (54% Anti-Xa vs 27% APTT)
 - Within 24 hours (74% Anti-Xa vs 63% APTT)
- Less dosing changes with 24 hours
 - Average 1.7 for APTT
 - Average 1.0 for Anti-Xa

Fruge, et al Am J Health-Sys Pharm 2015; 72 (Suppl 2) 590-7.

Monitoring UFH with Anti-Xa Rationale for change – Cost vs Savings?

• TTT

- Ave 28 Hrs with Anti-Xa vs 48 Hrs with APTT
- More test results within TT goal:
 - 66% for Anti-Xa vs 42% for APTT
- Less rate changes within 24 hours:
 - 0.8 for Anti-Xa vs 1.6 for APTT

Guervil, et al Ann Pharmacother 2011; 45:861-8

Monitoring UFH with Anti-Xa Rationale for change – Savings?

Less RBC transfusions associated with Anti-Xa UFH monitoring

UFH Indication	Odds ratio (95% CI)	Sample Size
ACS	0.16 (0.14 – 0.18)	14822
Stroke	0.41 (0.29 – 0.57)	1568
VTE	0.35 (0.26 – 0.48)	4414
UFH Indication	Bleed % Anti-Xa	Bleed % APTT
ACS	7.0%	24.6%
Stroke	13.8%	21.9%
VTF	3.9%	8.6%

Belk et al, J Thromb Haemost 2016, epub doi: 10.1111/jth.13476

Monitoring UFH with Anti-Xa Rationale for change – ?

- Stanford University hospital
- For ~ 9 years
- Discordant APTT vs Anti-Xa (higher APTT)
 - High 1-2 samples
 - Constant high >2 samples
 - Increased bleeding
 - Increased mortality
- Their practice: first 3 samples APTT + Anti-Xa

Price, et al Ann Pharmacother 2013;47:151-8

2016 UCDHS UFH Monitoring

Analyzing the data from UFH treated patients (N=243) :

	Current APTT	Anti-Xa (0.3-0.7)
No Rate Change	78	143
Rate reduced	61	53
Rate increased	78	47*

* Included 15 liver failure patient samples

Reasons (and benefits) to transition for Anti-Xa UFH monitoring

- TTT reached sooner
- Less dose changes
- Less testing
- 24/7 Anti-Xa testing
 - Putative benefit Anti-Xa DOAC measurements
- No need for annual APTT reagent lot evaluation
 - Never change UFH dosing order sets again (?)
- Dwindling and exiting expertise in the field

UCDHS transition to Anti-Xa

- 1. What are the issues?
- 2. Did the transition happen?

UCDHS UFH Anti-Xa implementation

Identifying stakeholders

- Pharmacy, Surgery, ICU, GenMed, HemeOnc, ECLS
 - CMO meeting on board
 - P&T committee on board
- Education
 - Ownership
 - Who takes lead and calls
- Lab logistical issues
 - Changing practice in laboratory
 - Staff?
 - Reagents?
 - Cost differential

Putative benefits for 24/7 Anti-Xa operation?

UCDHS transition to Anti-Xa

Transition to anti-Xa monitoring occurred

Difficulties associated with transition:

Education process

Dosing nomograms

Concurrent therapy (e.g. apixaban when admitted)

Interferences with testing (APTT or Anti-Xa)

Special recognition

- Faculty:
 - Richard White, MD
 - Adam Giermasz, MD
- Pharmacists:
 - William Dager, PharmD
 - Aaron "Josh" Roberts, PharmD
- Clinical laboratory scientists:
 - Leslie Freeman, CLS
 - Lisa Gandy, CLS

Thank you...

Any Questions?

2018 CAMLT Annual Meeting Sep 30, 2018